Spatial Smoothing

Consider the data \(y_1, \ldots, y_{100} \) representing observed counts of sudden infant death syndrome (SIDS) aggregated from 1979 to 1983 across 100 counties of North Carolina. Typically, such data are assumed to follow a Poisson distribution

\[
y_i \sim \text{Pois}(E_i, e^\mu_i) \quad \text{for} \quad i = 1, \ldots, 100
\]

where \(E_i \) is the expected number of counts and \(e^\mu_i \) is the relative risk for area \(i \). The relative risk is an estimate of the **true standardised incidence rate** (SIR). The raw SIR, \(y_i/E_i \), may be unreliable for two reasons: 1) the observed counts may not be accurate (some SIDS deaths may have gone unrecorded, or recorded as a different cause of death), and 2) the expected counts, which are proportional to the population at risk (live births), may also be inaccurate.

\[
\theta = \frac{y_j}{E_j}
\]

where \(\theta \) is the **relative risk** for area \(j \). In the Bayesian framework, both \(\theta \) and \(\mu \) would be assigned weakly informative priors.

When comparing models, goodness-of-fit (GoF) statistics are usually used to choose the ‘best’ model. These statistics measure model fit while penalising for complexity. As an alternative, we propose goodness-of-smoothing (GoS) statistics which attempt to measure the degree of smoothing. For the methods below, we introduce the **covariate-adjusted SIR** (CASIR) \(e^\beta \), and covariate-adjusted raw SIR (CARSIR) analogous to the raw SIR.

Goodness-of-Fit Statistics

The deviance information criterion (DIC)\(^2\) can be expressed as

\[
\text{DIC} = 2p_D - 2 \log \left(\sum_{i=1}^{N} p(y_i|\theta_i) \right)
\]

where \(p_D \) penalises for additional parameters and \(p(y_i|\theta_i) \) is the likelihood evaluated at the posterior mean of \(\mu_i \). The widely applicable information criterion (WAIC)\(^3\) is defined as

\[
\text{WAIC} = 2p_W - 2 \log \left(\sum_{i=1}^{N} p(y_i|\theta_i|y_i) \right)
\]

where \(p_W \) is similarly a penalty term.\(^4\) A third GoF criteria is the leave-one-out conditional predictive ordinate (CPO)\(^5\) which seeks to re-observe theoretical future data \(y_i \) given \(y_{-i} \).

\[
\text{CPO}_i = p(y_i|\theta) = \int p(y_i|\theta)p(\theta|y_{-i})d\theta.
\]

The best models are taken to be those which minimise, \(\text{DIC}, \text{WAIC}, \alpha - \sum_{i=1}^{N} \log(CPO_i) \).

Goodness-of-Smoothing Statistics

The **variogram** for area \(i \) at distance lag \(h \) is given by

\[
\hat{\gamma}(h) = \frac{1}{2N(h)} \sum_{i=1}^{N} (y_i - y_j)^2
\]

where \(N(h) \) is the number of areas which are no more distant than the lag \(h \) from area \(i \), and \(j \) denotes all areas \(j \) which satisfy distance \(d_{ij} < h \), and \(z_i \) is a measured spatial variable. This variogram is computed for CASIR and CARSIR, and their ratio is averaged over \(h \). A small ratio (flat variogram) indicates over-smoothing, while a large ratio indicates under-smoothing. An example is shown in Figure 2.

Based on the work of Rong and Bailis (2017)\(^6\), a second approach we propose is to consider models that preserve the **spatial kurtosis** of the SIR,

\[
\text{Kurt}(SIR) = \frac{\mathbb{E}[(SIR - \text{mean})^4]}{\mathbb{E}[(SIR - \text{mean})^2]^2}
\]

while minimising (or reducing) roughness (i.e. the standard deviation of the first-order difference series). We also propose a new method, which considers how far the estimate \(\text{CASIR}_i \) moves from \(\text{CARSIR}_i \) towards the mean of the neighbouring CASIR values, \(\mathbb{E}[(\text{CASIR}_i - y_j)^2] \). Denoting the position at these two extremes as 0 and 1 respectively, the overall degree of smoothing can be quantified by analysing the distribution of these area-specific CASIR positions (see Figure 3).

Comparing Spatial Models

Consider the following maps showing a posterior point estimate of the key parameter values and derived quantities for 8 different models. According to DIC, WAIC, and the CPO criterion, the best models are H, G, and E respectively. Do you think these criteria identify the best models, or are they under-smoothed? Based on the GoS criteria in Figure 5, which models would you recommend?

Spatial Smoothing

Goodness-of-Fit Statistics

Goodness-of-Smoothing Statistics

Comparing Spatial Models

Key References